A - Tree
这道题粗看需要 Link Cut Tree,其实不然:如果我们仍然在把节点 $1$ 作为根节点来处理子树信息、放入线段树,之后的询问我们只需要灵活的分类讨论即可。在实根为 $root$ 时,$u, v$ 之间的 $LCA$ 显然是 $lca(u, v), lca(root, u), lca(root, v)$ 之间深度最大的那一个。而修改权值和查询权值,只需要讨论两种祖先关系和平行关系即可。
// QOJ2030.cpp
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int MAX_N = 3e5 + 200;
int n, q, seq[MAX_N], lft[MAX_N], rig[MAX_N], anti[MAX_N], root, fa[20][MAX_N], head[MAX_N], current;
int dep[MAX_N], ptot;
struct edge
{
int to, nxt;
} edges[MAX_N << 1];
void addpath(int src, int dst)
{
edges[current].to = dst, edges[current].nxt = head[src];
head[src] = current++;
}
namespace SegmentTree
{
ll nodes[MAX_N << 2], tag[MAX_N << 2];
#define lson (p << 1)
#define rson ((p << 1) | 1)
#define mid ((l + r) >> 1)
void build(int l, int r, int p)
{
if (l == r)
return (void)(nodes[p] = seq[anti[l]]);
build(l, mid, lson), build(mid + 1, r, rson);
nodes[p] = nodes[lson] + nodes[rson];
}
void pushdown(int p, int l, int r)
{
if (tag[p] != 0)
{
tag[lson] += tag[p], tag[rson] += tag[p];
nodes[lson] += 1LL * tag[p] * (mid - l + 1), nodes[rson] += 1LL * tag[p] * (r - mid);
tag[p] = 0;
}
}
void update(int ql, int qr, int l, int r, int p, ll val)
{
if (ql <= l && r <= qr)
{
nodes[p] += 1LL * (r - l + 1) * val, tag[p] += val;
return;
}
pushdown(p, l, r);
if (ql <= mid)
update(ql, qr, l, mid, lson, val);
if (mid < qr)
update(ql, qr, mid + 1, r, rson, val);
nodes[p] = nodes[lson] + nodes[rson];
}
ll query(int ql, int qr, int l, int r, int p)
{
if (ql <= l && r <= qr)
return nodes[p];
pushdown(p, l, r);
ll ret = 0;
if (ql <= mid)
ret += query(ql, qr, l, mid, lson);
if (mid < qr)
ret += query(ql, qr, mid + 1, r, rson);
return ret;
}
#undef mid
#undef rson
#undef lson
} // namespace SegmentTree
void dfs_init(int u, int fat)
{
dep[u] = dep[fat] + 1, fa[0][u] = fat, lft[u] = ++ptot, anti[ptot] = u;
for (int i = head[u]; i != -1; i = edges[i].nxt)
if (edges[i].to != fat)
dfs_init(edges[i].to, u);
rig[u] = ptot;
}
int getLCA(int x, int y)
{
if (dep[x] < dep[y])
swap(x, y);
for (int i = 19; i >= 0; i--)
if (dep[fa[i][x]] >= dep[y])
x = fa[i][x];
if (x == y)
return x;
for (int i = 19; i >= 0; i--)
if (fa[i][x] != fa[i][y])
x = fa[i][x], y = fa[i][y];
return fa[0][x];
}
int main()
{
memset(head, -1, sizeof(head)), root = 1;
scanf("%d%d", &n, &q);
for (int i = 1; i <= n; i++)
scanf("%d", &seq[i]);
for (int i = 1, u, v; i <= n - 1; i++)
scanf("%d%d", &u, &v), addpath(u, v), addpath(v, u);
dfs_init(1, 0), root = 1, SegmentTree::build(1, n, 1);
for (int i = 1; i < 20; i++)
for (int j = 1; j <= n; j++)
fa[i][j] = fa[i - 1][fa[i - 1][j]];
while (q--)
{
int opt, x, y, z;
scanf("%d%d", &opt, &x);
if (opt == 1)
root = x;
else if (opt == 2)
{
scanf("%d%d", &y, &z);
int lca = getLCA(x, y), lca1 = getLCA(root, x), lca2 = getLCA(root, y);
int dlca = (dep[lca1] > dep[lca2] ? lca1 : lca2);
if (dep[lca] > dep[dlca])
dlca = lca;
if (dlca == root)
SegmentTree::update(1, n, 1, n, 1, z);
else if (lft[dlca] <= lft[root] && rig[root] <= rig[dlca])
{
int u = root;
for (int i = 19; i >= 0; i--)
if (dep[fa[i][u]] > dep[dlca])
u = fa[i][u];
SegmentTree::update(1, n, 1, n, 1, z);
SegmentTree::update(lft[u], rig[u], 1, n, 1, -z);
}
else
SegmentTree::update(lft[lca], rig[lca], 1, n, 1, z);
}
else if (opt == 3)
{
// something different;
// if there is an ancestor relationship;
if (x == root)
printf("%lld\n", SegmentTree::nodes[1]);
else if (lft[x] <= lft[root] && lft[root] <= rig[x])
{
int u = root;
for (int i = 19; i >= 0; i--)
if (dep[fa[i][u]] > dep[x])
u = fa[i][u];
printf("%lld\n", SegmentTree::nodes[1] - SegmentTree::query(lft[u], rig[u], 1, n, 1));
}
else
printf("%lld\n", SegmentTree::query(lft[x], rig[x], 1, n, 1));
}
}
return 0;
}
B - Function
我们回顾一下式子:
$$f(x, y) = \begin{cases} A_y & x = 1 \\ f(x-1, y) + A_y & y = 1 \text{ and } x \neq 1 \\ \min { f(x-1, y-1), f(x-1, y) } + A_y & \text{otherwise} \end{cases}$$
我们可以近似地认为,这个式子的意义为在网格图上从 $(x, y)$ 走到 $(1, 1)$ 的最短距离。可以大概猜到一个结论:这样的路径一定是先走一段连续的左上角,再停在一个相对较小的权值上直走向上。那么,假设停止时,$y = i$,那么答案就是:
$$\text{设 } p[n] = \sum_{i = 1}^n A_i, ans = A_i(x - y + i) + p[y] - p[i]$$
我们整理一下:
$$A_i(x - y) + A_i \cdot i + p[y] - p[i]$$
我们可以把 $(x - y)$ 看做自变量,然后把这些直线丢入平面空间中。我们需要把询问离线排序,然后我们只需要保留最小的直线,也就是下凸包,这样可以让答案最小,用单调栈维护,并在栈上二分在其定义域中的直线并求值即可。
// QOJ2031.cpp
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int MAX_N = 5e5 + 200;
int n, q, stk[MAX_N << 1], tail;
double pos[MAX_N << 1];
ll ai[MAX_N], prefix[MAX_N], constSuf[MAX_N], ans[MAX_N];
struct query
{
int x, y, id;
bool operator<(const query &rhs) const { return y < rhs.y; }
} queries[MAX_N];
double calc(int x, int y) { return double(constSuf[y] - constSuf[x]) / double(ai[x] - ai[y]); }
int main()
{
scanf("%d", &n);
for (int i = 1; i <= n; i++)
{
scanf("%lld", &ai[i]), prefix[i] = prefix[i - 1] + ai[i];
constSuf[i] = ai[i] * i - prefix[i];
}
scanf("%d", &q);
for (int i = 1; i <= q; i++)
scanf("%d%d", &queries[i].x, &queries[i].y), queries[i].id = i;
sort(queries + 1, queries + 1 + q);
int curt = 0;
for (int i = 1; i <= q; i++)
{
int delta = queries[i].x - queries[i].y;
while (curt + 1 <= queries[i].y)
{
curt++;
while (tail > 0 && ai[stk[tail]] >= ai[curt])
tail--;
while (tail > 1 && calc(curt, stk[tail]) > calc(stk[tail], stk[tail - 1]))
tail--;
stk[++tail] = curt;
if (tail > 1)
pos[n - tail] = calc(curt, stk[tail - 1]);
}
int idx = n - (lower_bound(pos + n - tail, pos + n - 1, delta) - pos);
ans[queries[i].id] = delta * ai[stk[idx]] + constSuf[stk[idx]] + prefix[curt];
}
for (int i = 1; i <= q; i++)
printf("%lld\n", ans[i]);
return 0;
}
C - Or
很显然的 DP 式子,设置 $dp[i][j]$ 为前 $i$ 个序列中已经选择了 $j$ 位 $1$ 的合法状态。正常的转移非常简单:
$$dp[i][j] = \sum_{c = 1}^j dp[i - 1][j - c] {j \choose c} 2^{j - c}$$
其中,$c$ 为这次新增的 $1$ 的个数。这样的转移是 $\Theta(nk^2)$ 的。然而,我们发现这个式子的卷积形式非常明显:
$$
\begin{aligned}
dp[i][j] &= \sum_{c = 1}^j \frac{ dp[i - 1][j - c] 2^{j - c} } { (j - c)! } \cdot \frac{j!}{c!} \\
\frac{dp[i][j]}{j!} &= \sum_{c = 1}^j \frac{dp[i - 1][j - c] 2^{j - c}}{(j - c)!} \cdot \frac{1}{c!}
\end{aligned}
$$
稍微设置一下:
$$
\begin{aligned}
A_i(x) &= \sum_{j = 0}^\infty \frac{dp[i][j]}{j!} x^j = \sum_{j = 0}^\infty x^j \sum_{c = 1}^j \frac{dp[i - 1][j - c]2^{j - c}}{(j - c)!} \cdot \frac{1}{c!} \\
F_i(x) &= \sum_{c = 0}^\infty \frac{dp[i - 1][c]2^c}{c!} x^c, G_i(x) = \sum_{c = 0}^\infty \frac{1}{c!} x^c \\
A_i(x) &= F_i(x)G_i(x)
\end{aligned}
$$
调用 $n$ 次 NTT 即可算完。但是这样非常的缓慢,我们需要利用更多已有的信息。我们注意到:
$$
\begin{aligned}
A_i(2x) &= \sum_{c = 0}^\infty \frac{dp[i - 1][c]}{c!} (2x)^c = \sum_{c = 0}^\infty \frac{dp[i - 1][c]2^c}{c!} x^c \\
&= F_i(x)
\end{aligned}
$$
Splendid!调整一下:
$$
A_i(x) = F_i(x)G_i(x) = A_i(2x)G_i(x)
$$
我们可以递归来算,这样复杂度就是 $\Theta(n \log n \log k)$ 的了。
// QOJ2032.cpp
#include <bits/stdc++.h>
using namespace std;
const int MAX_N = 1e5 + 200, mod = 998244353, G = 3;
int n, K, poly_bit, poly_siz, rev[MAX_N], fac[MAX_N], fac_inv[MAX_N], pow2[MAX_N];
int f[MAX_N], g[MAX_N];
int quick_pow(int bas, int tim)
{
int ret = 1;
while (tim)
{
if (tim & 1)
ret = 1LL * ret * bas % mod;
bas = 1LL * bas * bas % mod;
tim >>= 1;
}
return ret;
}
const int Gi = quick_pow(G, mod - 2);
void ntt_initialize()
{
for (int i = 0; i < poly_siz; i++)
rev[i] = ((rev[i >> 1] >> 1) | ((i & 1) << (poly_bit - 1)));
}
void ntt(int *arr, int dft)
{
for (int i = 0; i < poly_siz; i++)
if (i < rev[i])
swap(arr[i], arr[rev[i]]);
for (int step = 1; step < poly_siz; step <<= 1)
{
int omega_n = quick_pow((dft == 1 ? G : Gi), (mod - 1) / (step << 1));
for (int j = 0; j < poly_siz; j += (step << 1))
{
int omega_nk = 1;
for (int k = j; k < j + step; k++, omega_nk = 1LL * omega_nk * omega_n % mod)
{
int t = 1LL * arr[k + step] * omega_nk % mod;
arr[k + step] = (0LL + arr[k] + mod - t) % mod;
arr[k] = (1LL * arr[k] + t) % mod;
}
}
}
if (dft == -1)
{
int inv = quick_pow(poly_siz, mod - 2);
for (int i = 0; i < poly_siz; i++)
arr[i] = 1LL * arr[i] * inv % mod;
}
}
void polyMultiply(int *A, int *B)
{
ntt(A, 1), ntt(B, 1);
for (int i = 0; i < poly_siz; i++)
A[i] = 1LL * A[i] * B[i] % mod;
ntt(A, -1);
for (int i = 0; i < poly_siz; i++)
B[i] = 0;
for (int i = K + 1; i < poly_siz; i++)
A[i] = 0;
}
void multiply(int *A, int coeff)
{
for (int i = 0, acc = 1; i <= K; i++, acc = 1LL * acc * coeff % mod)
A[i] = 1LL * A[i] * acc % mod;
}
void solve(int idx)
{
if (idx == 0)
return (void)(f[0] = 1);
if (idx & 1)
{
solve(idx - 1), g[0] = 0;
for (int i = 1; i <= K; i++)
g[i] = fac_inv[i];
multiply(g, quick_pow(2, idx - 1));
polyMultiply(f, g);
}
else
{
solve(idx >> 1);
for (int i = 0; i <= K; i++)
g[i] = f[i];
multiply(g, quick_pow(2, idx >> 1));
polyMultiply(f, g);
}
}
int main()
{
scanf("%d%d", &n, &K);
for (int i = fac[0] = 1; i <= K; i++)
fac[i] = 1LL * fac[i - 1] * i % mod;
fac_inv[K] = quick_pow(fac[K], mod - 2);
for (int i = K - 1; i >= 0; i--)
fac_inv[i] = 1LL * fac_inv[i + 1] * (i + 1) % mod;
for (int i = pow2[0] = 1; i <= max(n, K); i++)
pow2[i] = 2LL * pow2[i - 1] % mod;
while ((1 << poly_bit) <= (K << 1))
poly_bit++;
poly_siz = (1 << poly_bit), ntt_initialize();
solve(n);
int ans = 0;
for (int i = n; i <= K; i++)
ans = (1LL * ans + 1LL * f[i] * fac[K] % mod * fac_inv[K - i] % mod) % mod;
printf("%d\n", ans % mod);
return 0;
}
总结
我认为这是一套比较好的入门省选训练题,不会过于毒瘤也不会过于偏向联赛,科技题也不会过于裸露,而签到题也很友好。